
ZTBP:eBPF-Driven Analysis for Improved Random
Read Performance in ZNS Devices via DB

Clustering
1st SangHune Jung

Department of Electrical and Electronic Engineering.
University of Yeonsei

Seoul, Rep.South Korea
sanghune.jung@yeosei.ac.kr

2nd Eui-Young Chung

Department of Electrical and Electronic Engineering.
University of Yeonsei

Seoul, Rep.South Korea
eychung@yonsei.ac.kr

Abstract—Despite the introduction of advanced storage tech-
nologies, NAND-based devices continue to exhibit signifi-
cantly higher latencies compared to memory technologies like
SRAM/DRAM, hindering storage media performance. With the
increasing adoption of Zoned Namespace (ZNS) [5] SSD op-
timizing their performance for random read workloads has a
critical challenge to mitigate the inherent latency limitations of
NAND devices. This paper presents ZTBP, a novel framework
that leverages the eBPF (Extended Berkeley Packet Filter) [10]–
[13] technology to trace and analyze NVMe IO operations on
ZNS devices, enabling dynamic cache optimization and improving
random read performance.

The ZTBP framework employs eBPF for comprehensive
NVMe IO tracing and integrates machine learning libraries for
applying DB clustering algorithms to identify critical high-read-
intensity zones within the ZNS SSD. This approach facilitates
prioritized caching of frequently accessed zones, resulting in
enhanced cache hit ratios and reduced random read latencies,
addressing the latency bottlenecks in NAND-based storage media.

Extensive evaluations using expected ZNS workloads and
demonstrate the effectiveness of ZTBP in optimizing storage
performance and mitigating the latency limitations of NAND
devices. The proposed framework achieves substantial improve-
ments in IOPS, bandwidth, and cache hit rates compared to
baseline scenarios, with performance gains ranging from 14% to
40% across various workload patterns and intensities.

This research introduces a novel approach to address the
challenges of random read performance and latency bottlenecks
in NAND-based ZNS SSDs by leveraging eBPF for IO tracing
and machine learning for cache optimization. The ZTBP frame-
work contributes to the advancement of storage technologies,
enabling more efficient and high-performance storage solutions
that overcome the inherent limitations of current NAND devices.
This study significantly diverges from previous works by specifi-
cally targeting NVMe IO operations analysis for performance
enhancement, which wasn’t the primary focus of the earlier
studies on optimizing RocksDB [7] for ZNS SSDs, the benefits
of ZNS interfaces [8], or general performance characteristics of
ZNS SSDs. [9]

Index Terms—eBPF,ZNS,DB Clustering

I. INTRODUCTION

This study introduces a method using eBPF for analyzing
NVMe IO operations on ZNS NVMe devices, focusing on DB-

clustering. While current research on eBPF mainly addresses
NVMe IO tracking and command frequency reduction, its use
in reprocessing tasks remains underexplored.
ZNS NVMe devices offer efficient flash device management
through direct zone mapping, aligning logical and physical
addresses unlike legacy devices. By leveraging these features
and statistical machine learning, our research aims to trace and
analyze NVMe IO operations comprehensively.
In this paper, we propose it ’ZTBP’

• We hypothesize that despite randomness, certain zones
in ZNS devices, each with unique read intensities, are
more actively involved in operations. We believe machine
learning, especially techniques like KNearest Neighbors
(KNN) or DB clustering, can identify these critical zones.
Using eBPF for IO activity tracing and categorization, we
seek to enable effective predictions.

• eBPF’s kernel development bypass and compatibility
with traditional machine learning techniques broaden its
application, promising insights for storage performance
optimization and contributing significantly to the field.

Our system is anticipated to leverage a new tool called eBPF
to contribute to performance improvements in storage systems.
This approach is expected to make a tangible impact on
enhancing the performance of massive server system or big
data products using storage solutions.

A. Motivation

The claim that Intel Optane’s latency surpasses host IO has
sparked discussions, depending on block size and settings.
Optane’s expected impact hasn’t fully materialized [3], with
NAND’s latency still much higher than SRAM/DRAM Fig. 1.
Additionally, enhancing cache hit rates on Host typically
necessitated kernel modifications, a complex task due to MMU
bugs and the intricate relationship between implementation and
storage operations.

ZNS Devices reorganize data into zones, simplifying the
logical-physical data relationship and enhancing SSDs’ under-
standing. This zoning is expected to streamline intensive reads



Fig. 1. Comparison of IO Latency for Optane and NAND

TABLE I
COMPARISON OF IO LATENCY IN OPTANE AND NAND STORAGE MEDIA

Storage Media Optane NAND
Value (ns) Ratio Value (ns) Ratio

Kernel Crossing 351 5.6% 351 0.7%
Read Syscall 199 3.2% 199 0.4%
EXT4 2006 32.0% 2006 3.8%
BIO 379 6.0% 379 0.7%
NVMe Driver 113 1.8% 113 0.2%
Storage Device 3224 51.4% 50000 94.3%

for specific data types, potentially lowering read latency and
boosting system performance. Without altering the kernel, the
goal is to reduce random-read storage IO latency, integrating
well with machine learning libraries for a latency-efficient sys-
tem. This approach seeks to bypass current cache optimization
limits, leveraging ZNS Devices’ distinct attributes for a more
effective storage solution. [1]

II. DESIGN PRINCIPLES

The design of ZTBP is guided by the following principles:
• Minimal system resource impact: The eBPF-based trac-

ing and analysis components are designed to minimize
overhead and resource consumption on the host system.

• Flexibility and adaptability: The framework allows
for easy configuration and fine-tuning of parameters,
enabling adaptability to various analysis needs and work-
load scenarios.

• Seamless integration with machine learning libraries:
ZTBP seamlessly integrates with popular machine learn-
ing libraries, such as PyTorch, TensorFlow, and scikit-
learn, facilitating the application of diverse algorithms
for data analysis and optimization.

The goal is to develop a solution that bridges the technologi-
cal gap while minimizing system resource impact and offering
flexibility in testing and deployment. Achieving this requires
addressing key challenges with strategic solutions, leading to a
robust, innovative eBPF-based NVMe IO tracing and analysis
framework.“Fig. 2”

Fig. 2. ZTBP Architecture

Fig. 3. ZTBP Feedback system for Overhead Optimization

III. IMPLEMENTATION: ZTBP (ZNS TRACE AND
ANALYSIS BYPASS KERNEL PLATFORM)

A. Tracing & Gathering Module

1) Interrupt kprobe Operation: Implements interrupt
kprobe operations for real-time event interception within the
Linux kernel. Utilizes kprobes to dynamically instrument
specific kernel functions, allowing the capture of NVMe IO
events as they occur ”Algo.1”

2) Stacking to NVMe IO Trace: Introduces a stacking
mechanism to facilitate comprehensive NVMe IO trace collec-
tion. Ensures that intricate details of each NVMe IO operation
are logged, providing a granular view of the system’s behavior

3) Machine Learning Library Integration: Incorporates
a variety of machine learning libraries, including PyTorch,
TensorFlow, and scikitlearn. Allows for the application of
diverse machine learning algorithms to analyze and interpret
NVMe IO traces. ”Algo.2”



4) Overall Overhead Optimization: To reduce host over-
head while using eBPF and Python machine learning frame-
works, the ZTBP platform is designed to limit its operations
to around 10 times per day. Additionally, if a certain level of
cache hit ratio increase is not achieved, the overall operation of
the platform will be restricted. This approach aims to minimize
overhead by carefully controlling the frequency and conditions
under which ZTBP operates.”Fig.3”

5) Pre-Processing for DB Clustering parameter: The
algorithm performs 5-fold cross-validation to fine-tune DB-
SCAN’s eps and min samples. It assesses each parameter
combination by fitting DBSCAN to training data and measur-
ing clustering quality on test data with the silhouette score,
provided multiple clusters exist. After cycling through all
folds and parameter sets, it identifies the optimal eps and
min samples that yield the highest average silhouette score,
thus optimizing the clustering outcome.”Algo.3”

Algorithm 1 Disk Check and BPF Initialization
if disk is specified then

disk path← /dev/ + disk
if disk exists at disk path then

Print “no such disk”
Exit

end if
dev ← Get device numbers
Insert disk filter into BPF text

else
Remove disk filter from BPF text

end if
if debug or ebpf flag then

Print BPF text
if ebpf flag then

Exit
end if

end if
Initialize BPF

Algorithm 2 Event Processing and Clustering Operation
Load disk statistics
Define event processing function
Perform k-fold cross-validation on dataset
Normalize data and apply DBSCAN clustering
while true do

Poll BPF for events
if interrupted then

Exit
end if

end while

B. Feedback Module via IOCTL Command

1) Dynamic Interaction by IOCTL command: Implements
a feedback mechanism through IOCTL commands, fostering

Algorithm 3 KFold Cross-Validation for DBSCAN Parameter
Optimization
X ← scale data
kf ← KFold(n splits = 5)
best eps← None
best min samples← None
best sil← −1
eps values← range(0.01, 0.05, 0.01)
min samples values← range(20, 50, 10)
progress← 0
for eps in eps values do

for min samples in min samples values do
for (tr idx, test idx) in kf.split(X) do

X train,X test← X[tr idx], X[test idx]
db← DBSCAN(eps,min samples).FIT(X train)
test labels← db.FIT PREDICT(X test)
if len(unique(test labels)) > 1 then

score←
sil score(X test, test labels)
APPEND(sil avg, score)

end if
end for
if sil avg then

sil avg score← mean(sil avg)
if sil avg score > best sil then

best eps← eps
best min samples← min samples
best sil← sil avg score

end if
end if

end for
end for
return best eps, best min samples, best sil

dynamic interaction with the ZTBP platform. Users can dy-
namically control and adjust the behavior of the tracing and
gathering module based on realtime requirements.

2) Fine-Tuning Capability and minimize Total Overhead:
Enables users to fine-tune parameters and configurations
through IOCTL commands, ensuring adaptability to varying
analysis needs. Facilitates on-the-fly adjustments with-out the
need for platform reinitialization. Such as Clustering informa-
tion and actual zone hit ratio for retune whole system
Moreover, in order to minize system overhead build a protocol
it has try count and check hit ratio for feedback system. which
lead to 1 day limitation count and others.

3) Zone Recognition index LRU: Based on the first index,
the cache index structure is con-figured with ZONE recogni-
tion offset at insert index 0, and a normal offset in an append
manner. In the case of Cache hit operation, the changing index
is also based on that index. For normal offset, it cannot exceed
the first index, and for ZONE recognition offset, it operates
with index 0. In this way, when caching, it is possible to delete
only the last index without comparing each cached index if the
buffer is full.”Fig.4”



Algorithm 4 LRU Cache Operations
function CREATENODE(key, value, priority)

allocate newNode
newNode.key ← key
newNode.value← value
newNode.priority ← priority
return newNode

end function
function CREATELRUCACHE(capacity)

allocate cache
cache.capacity ← capacity
return cache

end function
function REMOVENODE(node, cache)

// Adjust links to remove node from cache
end function
function INSERTTOHEAD(cache, node, priority)

if cache is empty then
if priority is high then

Set node as both head and tail of cache
else

Set node as head, tail, and l head of cache
end if

end if
if cache is not empty and l head exists then

if priority is high then
Insert node before current head

else
Handle insertion when tail is
the same as l head,
adjusting l head and tail as needed

end if
else cache is not empty but l head does not exist

if priority is high then
Insert node before current head

else
Set node as l head and adjust tail

end if
end if

end function
function GET(cache, key)

// Retrieve node by key and adjust position
end function
function PUT(cache, key, value, priority)

// Insert or update node in cache
end function
function FREELRUCACHE(cache)

// Free all nodes and cache structure
end function
function PRINTLRUCACHE(cache)

// Print cache details for debugging
end function

Fig. 4. Zone Recognization LRU.

IV. EVALUATIONS

Introduce the verification protocol designed to validate the
ZNS protocol under real workload scenarios and simulate
high-bandwidth operations with multi-zone configurations.

A. Verify ‘ZTBP’ Protocol Test

Execute “NVMeVirt” [6] tests to simulate realworld ZNS
workloads. Verify the ZTBP protocol’s adherence to specifi-
cations and its functionality under diverse workload condi-
tions. Evaluate the system’s response to ZNS-specific patterns,
emphasizing protocol correctness.

• Environments: QEMU
• Storage: NVMeVirt for ZNS
• BenchMarktool : fio / zone intensive workload
• Cache Size : 64MB
• Zone Size : 32MB

TABLE II
COMPARISON OF SYSTEM PERFORMANCE BY FIO

Metric ZTBP Enabled ZTBP Disabled
Workload Pattern Zone 1,7,11,15,19 intensive on 80%
Jobs and Queue 36-Jobs and 4-Queue
IOPS 79.2k 69.1k
Bandwidth (BW) 278MiB/s (292MB/s) 277MiB/s (290MB/s)
Latency (50th) 1811µs 1876 µs
Cache Hit (%) 30% 26%
Tot Read Cnt 1,000,000

TABLE III
COMPARISON OF SYSTEM PERFORMANCE BY FIO

Metric ZTBP Enabled ZTBP Disabled
Workload Pattern Zone 1,7,11,15,19 intensive on 60%
Jobs and Queue 48-Jobs and 4-Queue
IOPS 115k 105k
Bandwidth (BW) 422MiB/s (442MB/s) 409MiB/s (429MB/s)
Latency (50th) 1663µs 1876 µs
Cache Hit (%) 24% 17%
Tot Read Cnt 1,000,000

The ZTBP protocol enhances storage performance and
efficiency, significantly increasing IOPS and bandwidth, thus
improving data storage and retrieval. These enhancements are



Fig. 5. ZTBP Result 80% and 60% Intensive

crucial for high-throughput, low-latency applications, under-
scoring the importance of protocol advancements in storage
technology evolution.

1) Evaluation summary: Summarize findings from both
verification and simulation-based tests, The verification tests
conducted to evaluate the ZTBP protocol under simulated
workload scenarios reveal its effectiveness in enhancing stor-
age operation performance. Key findings from these tests
include:

• Increase in Cache Hits : The application of the ZTBP
protocol led to a substantial increase in minimum cache
hits, with improvements ranging from 14% to an impres-
sive 40%.

• Improvement in Maximum Performance : There was
a notable improvement in maximum performance, with
gains exceeding 11%.

The ZTBP protocol significantly boosts storage efficiency
and performance, especially in high-throughput, low-latency
settings. Its impact on cache hit rates and performance
improvements demonstrates its potential to advance storage
technologies, making it essential for high-performance storage
needs.

V. DISCUSSION AND LIMITATION

A. Reliability of the Used ZNS Workload

The study struggles with precise ZNS workload simulations
due to data scarcity. Using ZNS’s zone-based operations, it
aims to predict heavy use in specific zones for realistic work-
load modeling. Future research will explore zone traits more
deeply to improve insights and reliability, tackling bandwidth
measurement and variable manipulation challenges.

B. Limitations in Measuring Higher Bandwidth and Manipu-
lating Other Factors

An overarching challenge stems from the constraint posed
by the absence of tangible hardware during the developmental
and evaluative phases. This constraint severely impedes the
capacity to accurately gauge scenarios involving heightened
bandwidth and to manipulate various determinants influencing
NVMe IO operations. Addressing this predicament necessi-
tates the integration of strategic measures within the design
framework, potentially entailing the establishment of authentic

simulation environments or the utilization of surrogate appa-
ratus. Surmounting this obstacle holds paramount significance
in ensuring the adaptability and efficacy of the eBPF-based
NVMe IO tracing and data collection module across a spec-
trum of operational contexts. To enhance precision in estimat-
ing and evaluating scenarios involving elevated bandwidth, the
integration of event-based simulation with meticulous timing
becomes imperative.

VI. CONCLUSION

Notably, it enhances ZNS random read performance
without the kernel modifications. The traced logs, analyzed
in real-time using mainstream machine learning algorithms,
enable the dynamic elevation of cache hit ratios. Analyzed
ZNS address, the SSD FTL cache hit ratio increases, resulting
in improved random read performance. This observation
suggests a positive correlation between cache optimization
and performance enhancement.
The verification spans from a minimum of 60% to a
maximum of 80% workload, affirming the efficacy of ZTBP
in optimizing storage performance.

As we look ahead, this research provides a solid foundation
for future innovations in storage optimization. The validation
process with ZTBP to elevate performance and reduce band-
width requirements in zone-based workloads. In essence, BPF
stands as a promising tool for redefining the landscape of
storage device optimization and performance enhancement.
In future research, we will utilize a simulator to optimize host
behavior and other factors, systematically approaching how
ZTBP operations will precisely affect devices.

REFERENCES

[1] Zhong, Y., Li, H., Wu, Y. J., Zarkadas, I., Tao, J., Mesterhazy, E., ... &
Cidon, A. (2022). XRP:In-Kernel Storage Functions with eBPF. In 16th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 22) (pp. 375-393).

[2] Tehrany, N., & Trivedi, A. (2022). Understanding NVMe Zoned
Namespace (ZNS) Flash SSD Storage Devices. arXiv preprint
arXiv:2206.01547.

[3] Tom Coughlin.Is Intel Going To Drop Optane?. https://www.forbes.
com/sites/tomcoughlin/2022/02/28/is-intel-going-to-drop-optane/?sh=
511f22ec79f2.

[4] Zhong, Y., Wang, H., Wu, Y. J., Cidon, A., Stutsman, R., Tai, A., &
Yang, J. (2021, June). BPF for storage: an exokernel-inspired approach.
In Proceedings of the Workshop on Hot Topics in Operating Systems
(pp. 128-135).

[5] Han, K., Gwak, H., Shin, D., & Hwang, J. (2021). ZNS+: Advanced
zoned namespace interface for supporting in-storage zone compaction.
In 15th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 21) (pp. 147-162).

[6] Kim, S. H., Shim, J., Lee, E., Jeong, S., Kang, I., & Kim, J. S. (2023).
NVMeVirt: A Versatile Software-defined Virtual NVMe Device. In 21st
USENIX Conference on File and Storage Technologies (FAST 23) (pp.
379-394).

[7] Im, M., Kang, K., & Yeom, H. (2022, November). Accelerating
RocksDB for small-zone ZNS SSDs by parallel I/O mechanism. In
Proceedings of the 23rd International Middleware Conference Industrial
Track (pp. 15-21).

[8] Bjørling, M., Aghayev, A., Holmberg, H., Ramesh, A., Le Moal, D.,
Ganger, G. R., & Amvrosiadis, G. (2021). ZNS: Avoiding the block
interface tax for flash-based SSDs. In 2021 USENIX Annual Technical
Conference (USENIX ATC 21) (pp. 689-703).



[9] Shin, H., Oh, M., Choi, G., & Choi, J. (2020, August). Exploring per-
formance characteristics of ZNS SSDs: Observation and implication. In
2020 9th Non-Volatile Memory Systems and Applications Symposium
(NVMSA) (pp. 1-5). IEEE.

[10] bcc. [Online]. Available: https://github.com/iovisor/bcc.
[11] bpf: Introduce function-by-function verification. [Online]. Available:

https://lore.kernel.org/bpf/20200109063745.3154913-4-ast@kernel.org/.
[12] bpftrace. [Online]. Available: https://github.com/iovisor/bpftrace.
[13] Cilium. [Online]. Available: https://github.com/cilium/cilium.
[14] Cloudflare architecture and how BPF eats the

world. [Online]. Available: https://blog.cloudflare.com/
cloudflare-architecture-and-how-bpf-eats-the-world/.

[15] DPDK Data Plane Development Kit. [Online]. Available: https://www.
dpdk.org/.

[16] eBPF. [Online]. Available: https://ebpf.io/.
[17] Efficient io with io uring. [Online]. Available: https://kernel.dk/io uring.

pdf.
[18] NVMe base specification. [Online]. Available: https://nvmexpress.org/

wp-content/uploads/NVM-Express-1 4b-2020.09.21-Ratified.pdf.
[19] Optimizing Software for the Next Gen Intel Optane SSD P5800X.

[Online]. Available: https://www.intel.com/content/www/us/en/events/
memory-and-storage.html?videoId=6215534787001.

[20] A thorough introduction to eBPF. [Online]. Available: https://lwn.net/
Articles/740157/.


